# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 4,4'-Bis[2-(benzylsulfanyl)phenylhydrazono]-2,2'-binaphthalene-1,1'(4*H*,4'*H*)dione

### Achintesh Narayan Biswas, Purak Das, Debatra Narayan Neogi, Rupa Bhawmick and Pinaki Bandyopadhyay\*

Department of Chemistry, University of North Bengal, Siliguri 734 013, India Correspondence e-mail: pbchem@rediffmail.com

Received 25 October 2007; accepted 30 October 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.139; data-to-parameter ratio = 12.2.

The crystal structure of the title compound,  $C_{46}H_{34}N_4O_2S_2$ , shows that the molecules exist in the hydrazone form and not the azo form. The title compound is actually a centrosymmetric dimer of 3-dehydro-1-[2-(benzylsulfanyl)phenylhydrazono]naphthalene-4-one connected through the C-3 position of the naphthalene unit. The hydrazone H atom and the sulfanyl S atom are linked by an intramolecular  $N-H\cdots$ S hydrogen bond. In each molecule, there are two intramolecular  $C-H\cdots$ O interactions. The crystal packing is stabilized by three weak intermolecular  $\pi-\pi$  interactions; the centroid–centroid distances are 3.808 (2), 3.955 (2) and 3.955 (2) Å; the corresponding perpendicular distances are 3.481, 3.535 and 3.584 Å.

### **Related literature**

For related literature, see: Antonov *et al.* (1999); Bagchi *et al.* (2007); Liu *et al.* (2005); Sudesh Kumar & Neckers (1989).



# Experimental

## Crystal data

 $C_{46}H_{34}N_4O_2S_2$   $V = 1743.0 (7) Å^3$ 
 $M_r = 738.89$  Z = 2 

 Monoclinic,  $P_{21}/c$  Mo  $K\alpha$  radiation

 a = 19.184 (4) Å  $\mu = 0.20 \text{ mm}^{-1}$  

 b = 4.6066 (10) Å T = 153 (2) K 

 c = 21.734 (5) Å  $0.42 \times 0.31 \times 0.19 \text{ mm}$ 

#### Data collection

Bruker SMART APEX CCD area detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.926, T_{\rm max} = 0.964$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.065$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.139$               | independent and constrained                                |
| S = 0.97                        | refinement                                                 |
| 3027 reflections                | $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 248 parameters                  | $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ |

6195 measured reflections

 $R_{\rm int} = 0.061$ 

3027 independent reflections

1893 reflections with  $I > 2\sigma(I)$ 

# Table 1

D-

N2-

C2-

Hydrogen-bond geometry (Å, °).

| $H \cdots A$                   | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $-H02 \cdot \cdot \cdot S1$    | 0.88 (4) | 2.54 (4)                | 3.012 (4)    | 115 (3)                              |
| $-H2 \cdot \cdot \cdot O1^{i}$ | 0.93     | 2.03                    | 2.752 (5)    | 133                                  |

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support (SR/S1/IC-08/2007) from the DST, Government of India, is gratefully acknowledged. We thank the CSIR (India) for the award of a fellowship (PD) and UGC (New Delhi) for the Special Assistance Programme to our Department. We also thank Professor P. K. Bharadwaj, IIT Kanpur, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2453).

#### References

- Antonov, L., Kawauchi, S., Satoh, M. & Komiyama, J. (1999). Dyes Pigm. 40, 163–170.
- Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m2130.
- Bruker (1997). SHELXTL. Bruker AXS Inc. Madison, Wisconsin, USA.

Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, X.-G., Feng, Y.-Q., Liang, Z.-P. & Wang, W. (2005). Acta Cryst. E61, 03857-03858.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sudesh Kumar, G. & Neckers, D. C. (1989). Chem. Rev. 89, 1915-1925.

Acta Cryst. (2007). E63, 04554 [doi:10.1107/S1600536807054499]

# 4,4'-Bis[2-(benzylsulfanyl)phenylhydrazono]-2,2'-binaphthalene-1,1'(4H,4'H)-dione

# A. N. Biswas, P. Das, D. N. Neogi, R. Bhawmick and P. Bandyopadhyay

### Comment

Aryl diazenes are among the largest group of dyes. The extensive application of azo dyes in industry and analytical chemistry have attracted attention for decades (Sudesh Kumar & Neckers, 1989). Optically active azobenzene polymers are very important functional materials because of their photoresponsive properties. Generally arylazonaphthalenes have been found to exist in the hydrazo-keto form in the solid state (Liu *et al.*, 2005). The position of azo and hydroxyl groups in arylazo compounds brings into play the azo-hydrazo equilibrium, which has been the subject of intensive investigation in recent years (Antonov *et al.*, 1999). Here in, we report the crystal structure of the title compound where the hydrazo-keto form is dominant over the azo-enol form in the solid state.

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom-numbering scheme. Selected bond lengths are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The title compound is actually the centro symmetric dimer of the asymmetric unit, 3-dehydro-1-[2-(benzylsulfanyl)phenylhydrazono]naphthalene-4-one and the centre of symmetry exists at the centre of the C3—C3<sup>i</sup> [symmetry code: (i) -x + 1, -y + 2, -z + 1] bond. In each dimer the asymmetric units are inter-connected by a C3—C3<sup>i</sup> [symmetry code: (i) -x + 1, -y + 2, -z + 1] bond of the naphthalene moiety and two C2—H···O1 interactions (Table 2, Fig. 1). Naphthyl and phenyl rings around the hydrazone group adopt a *trans* configuration. The hydrazone H atom and the sulfanyl S atom are linked by an intramolecular N—H···S hydrogen bond (Table 2, Fig. 1). The crystal packing is stabilized by three weak intermolecular  $\pi$ - $\pi$  interactions (Bagchi *et al.*, 2007); the Cg1— $Cg1^{ii}$ , Cg1— $Cg2^{iii}$  and Cg2— $Cg1^{iv}$  [Symmetry codes: (ii) 1 - x, 1 - y, 1 - z; (iii) x, 1 + y, z; (iv) x, -1 + y, z. Cg1 and Cg2 are the centroids of C1—C10 and C5—C9 rings respectively.] distances are 3.808 (2), 3.955 (2) and 3.955 (2) Å (Fig. 3); the corresponding perpendicular distances are 3.481 (with slippage of 1.544 Å), 3.535 and 3.584 Å, respectively.

### **Experimental**

The title compound, (I) was prepared by coupling diazotized 2-benzylthioaniline with 1-naphthol at around 273-278 K. The product was isolated by column chromatography and crystallized from ethanol. Suitable crystals of (I) were obtained by slow diffusion of a dichloromethane solution into *n*-hexane.

### Refinement

The N-bound H atom was located in a difference Fourier map and its coordinates and isotropic displacement parameter were freely refined. C-bound H atoms were included at calculated positions as riding atoms with C—H set to 0.93 Å for aromatic and 0.97 Å for CH<sub>2</sub>. H atoms, with  $U_{iso}$  (H) =  $1.2U_{eq}$ (C). Some low-angle reflections were excluded from the refinement, as they were probably obscured by the beam stop.

Figures



# 4,4'-Bis[2-(benzylsulfanyl)phenylhydrazono]-2,2'-binaphthalene- 1,1'(4H,4'H)-dione

| Crystal data                    |                                                 |
|---------------------------------|-------------------------------------------------|
| $C_{46}H_{34}N_4O_2S_2$         | $F_{000} = 772$                                 |
| $M_r = 738.89$                  | $D_{\rm x} = 1.408 {\rm Mg m}^{-3}$             |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 3027 reflections           |
| a = 19.184 (4)  Å               | $\theta = 2.1 - 25.0^{\circ}$                   |
| b = 4.6066 (10)  Å              | $\mu = 0.20 \text{ mm}^{-1}$                    |
| c = 21.734 (5)  Å               | T = 153 (2) K                                   |
| $\beta = 114.838 \ (4)^{\circ}$ | Needle, red                                     |
| $V = 1743.0 (7) \text{ Å}^3$    | $0.42 \times 0.31 \times 0.19 \text{ mm}$       |
| <i>Z</i> = 2                    |                                                 |
|                                 |                                                 |

Data collection

Bruker SMART APEX CCD area detector

3027 independent reflections

diffractometer

| Radiation source: fine-focus sealed tube                       | 1893 reflections with $I > 2\sigma(I)$ |
|----------------------------------------------------------------|----------------------------------------|
| Monochromator: graphite                                        | $R_{\rm int} = 0.061$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| phi and $\omega$ scans                                         | $\theta_{\min} = 2.1^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -14 \rightarrow 22$               |
| $T_{\min} = 0.926, T_{\max} = 0.964$                           | $k = -5 \rightarrow 5$                 |
| 6195 measured reflections                                      | $l = -24 \rightarrow 25$               |

| Re | finement |
|----|----------|
| m  | mement   |

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                  |
| $R[F^2 > 2\sigma(F^2)] = 0.065$                                | H atoms treated by a mixture of independent and constrained refinement    |
| $wR(F^2) = 0.139$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0594P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.97                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 3027 reflections                                               | $\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$                       |
| 248 parameters                                                 | $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$                |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                               |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters*  $(\hat{A}^2)$ 

|     | x            | У          | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|------------|--------------|---------------------------|
| H02 | 0.298 (2)    | 0.649 (8)  | 0.5023 (18)  | 0.035 (12)*               |
| S1  | 0.15711 (5)  | 0.7308 (2) | 0.42556 (4)  | 0.0214 (3)                |
| N1  | 0.37643 (16) | 0.4567 (6) | 0.58144 (14) | 0.0228 (8)                |
| C12 | 0.1686 (2)   | 0.4824 (8) | 0.49127 (17) | 0.0201 (9)                |
| C1  | 0.43806 (19) | 0.5734 (8) | 0.57898 (17) | 0.0204 (9)                |
| C3  | 0.50221 (19) | 0.8952 (8) | 0.52663 (16) | 0.0189 (8)                |
| C10 | 0.5114 (2)   | 0.4860 (8) | 0.63407 (17) | 0.0195 (9)                |
| C11 | 0.2422 (2)   | 0.4009 (8) | 0.53961 (17) | 0.0196 (8)                |

| N2   | 0.30659 (17) | 0.5246 (7) | 0.53532 (16) | 0.0234 (8)  |
|------|--------------|------------|--------------|-------------|
| C8   | 0.5156 (2)   | 0.2926 (8) | 0.68462 (17) | 0.0237 (9)  |
| H8   | 0.4709       | 0.2088     | 0.6834       | 0.028*      |
| C9   | 0.5792 (2)   | 0.6001 (8) | 0.63453 (17) | 0.0210 (9)  |
| C15  | 0.1852 (2)   | 0.0758 (9) | 0.59165 (18) | 0.0258 (9)  |
| H15  | 0.1905       | -0.0625    | 0.6245       | 0.031*      |
| 01   | 0.64011 (15) | 0.8716 (7) | 0.58070 (15) | 0.0543 (10) |
| C16  | 0.2494 (2)   | 0.1971 (8) | 0.58925 (17) | 0.0225 (9)  |
| H16  | 0.2979       | 0.1429     | 0.6210       | 0.027*      |
| C4   | 0.5785 (2)   | 0.7989 (8) | 0.58052 (18) | 0.0249 (9)  |
| C14  | 0.1119 (2)   | 0.1591 (8) | 0.54492 (18) | 0.0255 (10) |
| H14  | 0.0686       | 0.0787     | 0.5471       | 0.031*      |
| C20  | 0.1604 (2)   | 0.9702 (8) | 0.22193 (18) | 0.0243 (9)  |
| H20  | 0.1898       | 1.1158     | 0.2148       | 0.029*      |
| C2   | 0.4387 (2)   | 0.7774 (8) | 0.52924 (17) | 0.0231 (9)  |
| H2   | 0.3913       | 0.8339     | 0.4959       | 0.028*      |
| C6   | 0.6527 (2)   | 0.3442 (8) | 0.73783 (18) | 0.0268 (10) |
| Н6   | 0.6998       | 0.2997     | 0.7731       | 0.032*      |
| C18  | 0.1411 (2)   | 0.6237 (8) | 0.29665 (17) | 0.0196 (8)  |
| C13  | 0.1043 (2)   | 0.3600 (8) | 0.49592 (17) | 0.0207 (9)  |
| H13  | 0.0555       | 0.4158     | 0.4652       | 0.025*      |
| C7   | 0.5857 (2)   | 0.2237 (9) | 0.73672 (17) | 0.0260 (9)  |
| H7   | 0.5880       | 0.0974     | 0.7709       | 0.031*      |
| C5   | 0.6494 (2)   | 0.5284 (8) | 0.68709 (18) | 0.0250 (9)  |
| Н5   | 0.6945       | 0.6060     | 0.6878       | 0.030*      |
| C17  | 0.1672 (2)   | 0.4796 (8) | 0.36412 (17) | 0.0266 (10) |
| H17A | 0.2204       | 0.4212     | 0.3798       | 0.032*      |
| H17B | 0.1366       | 0.3070     | 0.3602       | 0.032*      |
| C23  | 0.0728 (2)   | 0.5399 (8) | 0.24326 (18) | 0.0244 (9)  |
| H23  | 0.0428       | 0.3965     | 0.2503       | 0.029*      |
| C22  | 0.0486 (2)   | 0.6662 (8) | 0.17986 (18) | 0.0238 (9)  |
| H22  | 0.0032       | 0.6062     | 0.1445       | 0.029*      |
| C21  | 0.0926 (2)   | 0.8822 (8) | 0.16946 (18) | 0.0254 (9)  |
| H21  | 0.0764       | 0.9686     | 0.1270       | 0.031*      |
| C19  | 0.1846 (2)   | 0.8421 (8) | 0.28492 (17) | 0.0225 (9)  |
| H19  | 0.2304       | 0.9018     | 0.3200       | 0.027*      |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| S1  | 0.0238 (5)  | 0.0194 (5)  | 0.0204 (5)  | 0.0035 (4)   | 0.0086 (4)  | 0.0017 (4)   |
| N1  | 0.0170 (17) | 0.0224 (18) | 0.0239 (17) | -0.0004 (14) | 0.0036 (14) | 0.0034 (15)  |
| C12 | 0.018 (2)   | 0.020 (2)   | 0.0208 (19) | 0.0020 (16)  | 0.0069 (16) | -0.0019 (17) |
| C1  | 0.0156 (19) | 0.019 (2)   | 0.026 (2)   | 0.0027 (16)  | 0.0077 (16) | -0.0025 (18) |
| C3  | 0.0184 (19) | 0.018 (2)   | 0.021 (2)   | -0.0009 (16) | 0.0090 (16) | -0.0041 (16) |
| C10 | 0.025 (2)   | 0.017 (2)   | 0.0181 (19) | 0.0009 (17)  | 0.0109 (16) | -0.0053 (17) |
| C11 | 0.018 (2)   | 0.022 (2)   | 0.0200 (19) | -0.0032 (17) | 0.0095 (16) | -0.0048 (17) |
| N2  | 0.0192 (18) | 0.027 (2)   | 0.0222 (18) | 0.0024 (15)  | 0.0066 (15) | 0.0085 (16)  |

| C8  | 0.023 (2)   | 0.020 (2) | 0.028 (2)   | 0.0010 (17)  | 0.0105 (17) | -0.0042 (18) |
|-----|-------------|-----------|-------------|--------------|-------------|--------------|
| C9  | 0.023 (2)   | 0.018 (2) | 0.024 (2)   | -0.0042 (17) | 0.0116 (17) | -0.0008 (17) |
| C15 | 0.029 (2)   | 0.026 (2) | 0.024 (2)   | -0.0030 (19) | 0.0118 (18) | 0.0000 (18)  |
| 01  | 0.0198 (16) | 0.075 (2) | 0.059 (2)   | -0.0034 (16) | 0.0080 (14) | 0.0415 (19)  |
| C16 | 0.0178 (19) | 0.026 (2) | 0.021 (2)   | -0.0006 (17) | 0.0057 (16) | 0.0018 (17)  |
| C4  | 0.018 (2)   | 0.023 (2) | 0.033 (2)   | -0.0027 (18) | 0.0111 (17) | 0.0056 (18)  |
| C14 | 0.019 (2)   | 0.034 (3) | 0.026 (2)   | -0.0074 (17) | 0.0110 (17) | -0.0045 (19) |
| C20 | 0.025 (2)   | 0.024 (2) | 0.027 (2)   | -0.0033 (18) | 0.0136 (18) | 0.0017 (19)  |
| C2  | 0.0180 (19) | 0.024 (2) | 0.025 (2)   | 0.0024 (18)  | 0.0062 (16) | -0.0033 (19) |
| C6  | 0.019 (2)   | 0.031 (2) | 0.023 (2)   | 0.0045 (18)  | 0.0014 (17) | -0.0008 (19) |
| C18 | 0.024 (2)   | 0.016 (2) | 0.021 (2)   | 0.0086 (17)  | 0.0121 (17) | 0.0006 (17)  |
| C13 | 0.0169 (19) | 0.029 (2) | 0.0130 (19) | -0.0043 (17) | 0.0029 (15) | -0.0055 (17) |
| C7  | 0.032 (2)   | 0.028 (2) | 0.021 (2)   | 0.007 (2)    | 0.0128 (17) | 0.0062 (19)  |
| C5  | 0.018 (2)   | 0.022 (2) | 0.031 (2)   | -0.0033 (17) | 0.0066 (17) | -0.0005 (19) |
| C17 | 0.037 (2)   | 0.020 (2) | 0.025 (2)   | 0.0061 (18)  | 0.0153 (18) | -0.0008 (18) |
| C23 | 0.024 (2)   | 0.023 (2) | 0.033 (2)   | -0.0011 (18) | 0.0192 (18) | -0.0004 (19) |
| C22 | 0.021 (2)   | 0.031 (2) | 0.022 (2)   | 0.0067 (18)  | 0.0108 (16) | 0.0009 (18)  |
| C21 | 0.030 (2)   | 0.029 (2) | 0.020 (2)   | 0.0127 (19)  | 0.0142 (18) | 0.0057 (18)  |
| C19 | 0.024 (2)   | 0.021 (2) | 0.021 (2)   | 0.0052 (17)  | 0.0083 (17) | -0.0019 (17) |
|     |             |           |             |              |             |              |

Geometric parameters (Å, °)

| S1—C12             | 1.770 (4)  | С16—Н16     | 0.9300    |
|--------------------|------------|-------------|-----------|
| S1—C17             | 1.837 (4)  | C14—C13     | 1.372 (5) |
| N1—C1              | 1.320 (4)  | C14—H14     | 0.9300    |
| N1—N2              | 1.330 (4)  | C20—C19     | 1.380 (5) |
| C12—C13            | 1.398 (5)  | C20—C21     | 1.383 (5) |
| C12—C11            | 1.411 (5)  | С20—Н20     | 0.9300    |
| C1—C2              | 1.436 (5)  | С2—Н2       | 0.9300    |
| C1—C10             | 1.469 (5)  | C6—C5       | 1.372 (5) |
| C3—C2              | 1.357 (5)  | C6—C7       | 1.392 (5) |
| C3—C3 <sup>i</sup> | 1.482 (7)  | С6—Н6       | 0.9300    |
| C3—C4              | 1.507 (5)  | C18—C23     | 1.391 (5) |
| C10—C8             | 1.390 (5)  | C18—C19     | 1.398 (5) |
| С10—С9             | 1.399 (5)  | C18—C17     | 1.491 (5) |
| C11—C16            | 1.393 (5)  | С13—Н13     | 0.9300    |
| C11—N2             | 1.398 (4)  | С7—Н7       | 0.9300    |
| N2—H02             | 0.88 (4)   | С5—Н5       | 0.9300    |
| C8—C7              | 1.382 (5)  | С17—Н17А    | 0.9700    |
| С8—Н8              | 0.9300     | С17—Н17В    | 0.9700    |
| C9—C5              | 1.392 (5)  | C23—C22     | 1.384 (5) |
| С9—С4              | 1.484 (5)  | С23—Н23     | 0.9300    |
| C15—C16            | 1.372 (5)  | C22—C21     | 1.383 (5) |
| C15—C14            | 1.399 (5)  | С22—Н22     | 0.9300    |
| С15—Н15            | 0.9300     | C21—H21     | 0.9300    |
| O1—C4              | 1.227 (4)  | С19—Н19     | 0.9300    |
| C12—S1—C17         | 99.43 (17) | C19—C20—H20 | 120.0     |
| C1—N1—N2           | 120.6 (3)  | С21—С20—Н20 | 120.0     |
| C13—C12—C11        | 118.4 (3)  | C3—C2—C1    | 125.8 (3) |
|                    |            |             |           |

| C13—C12—S1             | 120.3 (3)  | С3—С2—Н2                  | 117.1      |
|------------------------|------------|---------------------------|------------|
| C11—C12—S1             | 121.3 (3)  | C1—C2—H2                  | 117.1      |
| N1—C1—C2               | 126.0 (3)  | C5—C6—C7                  | 120.2 (3)  |
| N1—C1—C10              | 115.0 (3)  | С5—С6—Н6                  | 119.9      |
| C2—C1—C10              | 119.0 (3)  | С7—С6—Н6                  | 119.9      |
| C2—C3—C3 <sup>i</sup>  | 122.4 (4)  | C23—C18—C19               | 118.2 (3)  |
| C2—C3—C4               | 116.5 (3)  | C23—C18—C17               | 120.4 (3)  |
| C3 <sup>i</sup> —C3—C4 | 121.2 (4)  | C19—C18—C17               | 121.3 (3)  |
| C8—C10—C9              | 119.3 (3)  | C14—C13—C12               | 121.3 (3)  |
| C8—C10—C1              | 122.6 (3)  | C14—C13—H13               | 119.4      |
| C9—C10—C1              | 118.1 (3)  | С12—С13—Н13               | 119.4      |
| C16—C11—N2             | 121.6 (3)  | C8—C7—C6                  | 119.7 (3)  |
| C16—C11—C12            | 119.9 (3)  | С8—С7—Н7                  | 120.1      |
| N2—C11—C12             | 118.5 (3)  | С6—С7—Н7                  | 120.1      |
| N1—N2—C11              | 119.5 (3)  | C6—C5—C9                  | 120.5 (4)  |
| N1—N2—H02              | 123 (3)    | С6—С5—Н5                  | 119.7      |
| C11—N2—H02             | 117 (3)    | С9—С5—Н5                  | 119.7      |
| C7—C8—C10              | 120.6 (4)  | C18—C17—S1                | 109.9 (3)  |
| С7—С8—Н8               | 119.7      | С18—С17—Н17А              | 109.7      |
| С10—С8—Н8              | 119.7      | S1—C17—H17A               | 109.7      |
| C5—C9—C10              | 119.6 (3)  | C18—C17—H17B              | 109.7      |
| C5—C9—C4               | 118.6 (3)  | S1—C17—H17B               | 109.7      |
| C10—C9—C4              | 121.8 (3)  | H17A—C17—H17B             | 108.2      |
| C16—C15—C14            | 120.3 (4)  | C22—C23—C18               | 121.2 (4)  |
| C16—C15—H15            | 119.8      | С22—С23—Н23               | 119.4      |
| C14—C15—H15            | 119.8      | C18—C23—H23               | 119.4      |
| C15-C16-C11            | 120.4 (3)  | C21—C22—C23               | 119.6 (3)  |
| C15-C16-H16            | 119.8      | C21—C22—H22               | 120.2      |
| C11—C16—H16            | 119.8      | C23—C22—H22               | 120.2      |
| O1—C4—C9               | 118.5 (3)  | C22—C21—C20               | 120.2 (3)  |
| O1—C4—C3               | 122.8 (3)  | C22—C21—H21               | 119.9      |
| C9—C4—C3               | 118.7 (3)  | C20-C21-H21               | 119.9      |
| C13—C14—C15            | 119.7 (4)  | C20-C19-C18               | 120.8 (3)  |
| C13—C14—H14            | 120.2      | C20-C19-H19               | 119.6      |
| C15-C14-H14            | 120.2      | C18—C19—H19               | 119.6      |
| C19—C20—C21            | 120.0 (4)  |                           |            |
| C17—S1—C12—C13         | -95.4 (3)  | C2—C3—C4—O1               | 174.2 (4)  |
| C17—S1—C12—C11         | 83.9 (3)   | C3 <sup>i</sup> —C3—C4—O1 | -5.1 (7)   |
| N2—N1—C1—C2            | 0.0 (6)    | C2—C3—C4—C9               | -3.8 (5)   |
| N2—N1—C1—C10           | 178.3 (3)  | C3 <sup>i</sup> —C3—C4—C9 | 176.9 (4)  |
| N1—C1—C10—C8           | 0.7 (5)    | C16-C15-C14-C13           | 1.0 (5)    |
| C2-C1-C10-C8           | 179.2 (3)  | C3 <sup>i</sup> —C3—C2—C1 | 179.9 (4)  |
| N1—C1—C10—C9           | 179.7 (3)  | C4—C3—C2—C1               | 0.7 (5)    |
| C2-C1-C10-C9           | -1.8 (5)   | N1—C1—C2—C3               | -179.5 (3) |
| C13—C12—C11—C16        | 1.7 (5)    | C10-C1-C2-C3              | 2.2 (6)    |
| S1-C12-C11-C16         | -177.7 (3) | C15-C14-C13-C12           | 0.5 (5)    |
| C13—C12—C11—N2         | -179.6 (3) | C11—C12—C13—C14           | -1.8 (5)   |
| S1—C12—C11—N2          | 1.0 (5)    | S1—C12—C13—C14            | 177.6 (3)  |

| C1—N1—N2—C11                             | -179.2 (3) | C10—C8—C7—C6    | -1.4 (6)   |  |  |
|------------------------------------------|------------|-----------------|------------|--|--|
| C16—C11—N2—N1                            | -3.1 (5)   | C5—C6—C7—C8     | -0.6 (6)   |  |  |
| C12—C11—N2—N1                            | 178.2 (3)  | C7—C6—C5—C9     | 0.9 (6)    |  |  |
| C9—C10—C8—C7                             | 3.1 (5)    | C10—C9—C5—C6    | 0.9 (5)    |  |  |
| C1—C10—C8—C7                             | -177.9 (3) | C4—C9—C5—C6     | -179.6 (3) |  |  |
| C8—C10—C9—C5                             | -2.8 (5)   | C23-C18-C17-S1  | -108.6 (3) |  |  |
| C1—C10—C9—C5                             | 178.1 (3)  | C19—C18—C17—S1  | 72.3 (4)   |  |  |
| C8—C10—C9—C4                             | 177.7 (3)  | C12—S1—C17—C18  | 166.4 (3)  |  |  |
| C1—C10—C9—C4                             | -1.4 (5)   | C19—C18—C23—C22 | 0.7 (5)    |  |  |
| C14-C15-C16-C11                          | -1.1 (6)   | C17—C18—C23—C22 | -178.4 (3) |  |  |
| N2-C11-C16-C15                           | -179.0 (3) | C18—C23—C22—C21 | -0.9 (5)   |  |  |
| C12-C11-C16-C15                          | -0.3 (5)   | C23—C22—C21—C20 | 0.4 (5)    |  |  |
| C5—C9—C4—O1                              | 6.6 (6)    | C19—C20—C21—C22 | 0.1 (5)    |  |  |
| C10-C9-C4-O1                             | -173.9 (4) | C21-C20-C19-C18 | -0.2 (5)   |  |  |
| C5—C9—C4—C3                              | -175.3 (3) | C23-C18-C19-C20 | -0.2 (5)   |  |  |
| C10—C9—C4—C3                             | 4.2 (5)    | C17—C18—C19—C20 | 178.9 (3)  |  |  |
| Symmetry codes: (i) $-x+1, -y+2, -z+1$ . |            |                 |            |  |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------|-------------|--------------|--------------|------------|
| N2—H02…S1                                | 0.88 (4)    | 2.54 (4)     | 3.012 (4)    | 115 (3)    |
| C2—H2···O1 <sup>i</sup>                  | 0.93        | 2.03         | 2.752 (5)    | 133        |
| Symmetry codes: (i) $-x+1, -y+2, -z+1$ . |             |              |              |            |

Fig. 1









